Answer:
Option C
Explanation:
Given Ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$
Now $b^{2}=a^{2}(1-e^{2})$
$\Rightarrow b^{2}=16(1-e^{2}),\Rightarrow\frac{b^{2}}{16}=1-e^{2}$
$\Rightarrow e^{2}=1-\frac{b^{2}}{16}=\frac{16-b^{2}}{16}$
$\Rightarrow e=\frac{\sqrt{16-b^{2}}}{4}$
Foci = $(\pm ae,0)=(\pm\sqrt{16-b^{2}},0)$
Given hyperbola : $\frac{x^{2}}{14}+\frac{y^{2}}{81}=\frac{1}{25}$
$\Rightarrow \frac{x^{2}}{(\frac{12}{5})^{2}}-\frac{y^{2}}{(\frac{9}{5})^{2}}=1$
Now, $b^{2}=a^{2}(e^{2}-1)$
$\Rightarrow (\frac{9}{5})^{2}=(\frac{12}{5})^{2}(e^{2}-1)$
$\Rightarrow (\frac{9}{5})^{2}=(e^{2}-1)$
$\Rightarrow e^{2}=1+\frac{81}{144}=\frac{144+81}{144}$
$\Rightarrow e=\frac{15}{12}=\frac{5}{4}$
Foci = $(\pm ae,0)$= $(\pm 3,0)$
Since foci of the given ellipse and hyperbola coincide , therefore
$ \sqrt{16-b^{2}}=3\Rightarrow 16-b^{2}=9$
$\therefore$ b2 =7